Педагогика » Методика изучения комплексных чисел в общеобразовательной школе » Исторический обзор изучения комплексных чисел в советской и российской общеобразовательной школе: программы, учебники

Исторический обзор изучения комплексных чисел в советской и российской общеобразовательной школе: программы, учебники

Страница 2

Характеризуя постановку преподавания комплексных чисел в общеобразовательных школах нашей страны на этом этапе, В.М. Кухарь пишет, «… за последнее время наметились три различных взгляда в постановке вопроса об изучении комплексных чисел. Первый взгляд сводился к необходимости внести изменения в изучение этой темы в средней школе с тем, чтобы учащиеся получили понятие о реальном содержании мнимых чисел. Второе мнение сводится к полному исключению этой темы из школьной программы по математике. Третье мнение сводится к тому, чтобы в средней школе ограничиться одним только понятием о комплексных числах, без рассмотрения их свойств и действий над ними. Изъятие из программы средней школы комплексных чисел, имеющих исключительно важное значение в современной механике и технике, противоречит целям политехнического обучения. По нашему мнению, количество часов, отведённых программой на изучение темы, надо сохранить, но в основу введения мнимых и комплексных чисел надо положить идею дальнейшего расширения и обобщения понятия о числе, показав реальную сущность и практическое применение. Мириться дальше с таким положением, когда учащиеся оперируют с мнимыми числами, реального смысла которых они не понимают, ни в коем случае нельзя. Выход из такого положения надо искать прежде всего в постановке вопроса об изучении комплексных чисел в средней школе».

III этап (1965 – 1967г.г.).

К середине 20 века выявилось отставание математической подготовки учащихся средней школы в теории комплексных чисел.

Действующая программа средней школы по математике мало способствовала формированию у учащихся правильного научного представления о понятии комплексного числа и его роли в общей идее расширения понятия числа.

Учащиеся допускали логические ошибки, не понимали реального значения комплексных чисел, полностью отсутствовали представления о приложениях комплексных чисел. В сознании учащихся этот раздел представлялся как формально-логическая игра, не имеющая никакого отношения к реальному миру. Эти недочеты отмечали многие ведущие математики и методисты страны. Например, С.И. Новоселов, писал, «У учащихся возникают вопросы: какой реальный смысл числа и какие отношения окружающего мира оно отражает? Не находя ответа на эти вопросы, учащиеся невольно приходят к выводу, что вся теория комплексных чисел является фикцией. К сожалению, и в настоящее время среди молодежи, оканчивающей среднюю школу, можно встретить недоверчивое отношение к комплексному числу, как к чему-то несуществующему».

Н.Я. Виленкин в статье «Гибрид из мира идей или как комплексные числа стали прилагательными» прямо пишет: «Даже и теперь те, кто сталкивается с математикой лишь в средней школе, убеждены: никаких практических применений комплексные числа не имеют и иметь не могут, они придуманы лишь для того, чтобы портить жизнь школьникам.

Невозможно же, в самом деле, взвесить кг хлеба или отмерить метров сукна! Ведь даже само обозначение i для напоминает, что это число воображаемое, придуманное – оно происходит от латинского слова imaginarius - воображаемый, мнимый». Учитывая это, можно сделать вывод, что учащиеся лишь формально усваивают понятие комплексного числа и недостаточно глубоко вникают в его суть. В 1965 году был предложен проект программы средней школы по математике, где изучение комплексных чисел предлагалось начинать в 10 классе в курсе алгебры в темах (таблица 2):

Таблица 2

Содержание

Объем уч. материала в часах

1

Аксиоматический метод в математике. Расширение понятия числа.

15

2

Комплексные числа и многочлены.

40

При изучении темы «Аксиоматический метод в математике. Расширение понятия числа» учащихся предполагалось знакомить с такими понятиями, как группа, кольцо, поле, изоморфизм, и задачами расширения понятия числа.

В теме «Комплексные числа и многочлены» учащиеся должны были знакомиться с тригонометрической формой комплексного числа, с формулой Муавра и извлечением корня n – ой степени из комплексного числа.

Страницы: 1 2 3

Похожие публикации:

Учебная программа занятий кружка «Роспись по дереву»
Для занятий росписи по дереву вполне достаточно обычных средних способностей, чтобы ученик при правильном руководстве им, сознательно усвоил технику росписи. Главной задачей на занятиях кружка «Роспись по дереву» является задача привить любовь к творчеству, развивать художественные способности, а т ...

Электронное портфолио. Состав, структура, функции и типы электронного портфолио
Нами было выявлено, что под термином "портфолио" понимается способ фиксирования, накопления и оценки индивидуальных достижений. Слово "портфолио" пришло из английского языка и означает - предмет для хранения и переноски письменных работ, документов и т.д. Слово "portfolio&q ...

Теоритические предпосылки использования игр в экологическом воспитании детей
Успех в экологическом воспитании 2-3-летних малышей обеспечивается прежде всего пониманием воспитателя их психофизиологических особенностей. Дети этого возраста доверчивы и непосредственны, легко включаются в совместную со взрослым практическую деятельность, эмоционально реагируют на его добрый нет ...

Факторы адаптации детей в школе

Современное общество заинтересовано сохранить и улучшить здоровье человека. Эта проблема является одной из главных.

Категории

Copyright © 2025 - All Rights Reserved - www.pedagogyflow.ru